Rapid Prototyping with MacroFab, Part 2

As I described in Part 1, I am using MacroFab for rapid prototyping of my jeepbot concept project. In this post, I’ll describe the next phase of my project and how MacroFab has made it easy to get there.

As I thought about what jeepbot should be, the concept evolved into several different ideas. What I wanted to build first was a control board that directly controlled a simple relay box, like the one described by Hooz’s DIY project post. The idea was to focus on the control circuitry first, rather than the relay circuitry. The control board would replace a bank of switches, so easily plug-and-play. This would allow me to fine-tune the design over time, while retaining a good, simple relay box in the vehicle. I also renamed the project concept switchbot to go with the idea of being vehicle independent.

For my first board, I designed a circuit that contained a Atmel ATmega328P micro-controller, a MCP2515 CAN controller, a MCP2551 CAN transceiver, and a 74HC595D 8-bit shift register. I only designed in 4 switch circuits for this initial board. Each switch circuit is protected by a LTV816 optocoupler, to isolate the micro-controller’s digital logic from the actual switches. These output lines can in turn be used to drive other circuits, such as a relay board.

To round out the board, I added a two-port terminal connector for +12v power and ground, a two-port terminal connector for CAN high and low connections, and a DB9 connector for easily interfacing into automobile OBD-II connectors. I used a 6-port Molex connector for output for power, ground, and the 4 switch channels. A reset button and a 2×3 header for in-system chip programming (ICSP) interface to program the ATmega micro-controller was important to make sure I could download firmware later.

The board also has a simple +12v to +5v power supply regulation circuit and protection diode, but not with significant automotive transient protection. That circuitry will likely be needed in future versions.

You can find the Eagle files for this version of the board on github at https://github.com/dcgibbons/switchbot/releases/tag/v1.0_alpha

Like with my previous board, I used the MacroFab web interface to upload my Eagle design files. This board had a lot more parts than my previous one, and my experience with the previous board taught me I needed to be more careful in double-checking my part selection. Even with my caution, the engineers at MacroFab found several discrepancies for me to clarify, mostly with resistor values.

While the board was being produced, I discovered the diode value mistake I made with my previous board. I found the same mistake in this board, so I asked MacroFab if it could be replaced – yep! And they did so easily, since this was before assembly of the board had actually begun.


During the final assembly of the board, MacroFab found the two-port connector parts I selected for my CAN and power interfaces were wrong for my board design. I asked them not to populate those connectors as I had many of the correct ones in my workshop.

MacroFab also found during assembly that the crystal oscillator part I had selected would not  match the pins exactly on my board. The size was correct, but the orientation was wrong. I recall that selecting the oscillator part was difficult, so I was not too surprised. A little bit more research from the parts houses and I found what I thought would be a better part. MacroFab agreed and ordered it for me. This extra order only added a couple of days to the overall board assembly time.

IMG_2448A couple of weeks after ordering, my boards arrived. I ordered two of the boards this time, as I wanted to be able to leave one in my Jeep and use another for bench testing. As soon as they arrived, I hand soldered in the two-port connectors I had (I have a nice supply of them from SparkFun as they are so commonly used on Arduino-based boards).

The next step was to power up the board and see what happens. No smoke; it lives! Without a program downloaded to the micro-controller nothing much happened, but the solid power-on LED and the all 4 switch LEDs being on indicated to me that the core of the system was alive.


Next I used an AVR ICSP programmer to download software using the Arduino IDE, which front-ends the avrdude tool. I picked the Arduino blink sketch to see if it would download… success! I do not have an LED on pin 13 of the ATmega so I couldn’t see the sketch actually running, so next I dowloadeded my shiftreg test sketch. This sketch will cycle through all 4 switches and leave each one active for a few milliseconds. It will also display anything it receives over the CAN bus to its own serial output, although I did not make it easy to show serial output on this board.


Surprisingly to me, not only did the sketch download, it actually worked. The switch indicator LEDs lit up in turn, and with a meter I could measure the signal voltage on each output line on the Molex connector. Success!

I now have the basis for real hardware testing in my vehicle. I’ll post a follow-up on further progress with this project.

The most amazing thing about this experience so far has been the ease of use of the MacroFab interface, their quick turn-around time, and the pricing. For these two boards, the price was approximately $76 each. For a hobbyist, this pricing puts real low-volume projects in easy each. At higher quantities, the price drops dramatically. For 1,000 units, for example, pricing approaches $15 a board for this design.

Stay tuned…


Rapid Prototyping with MacroFab, Part 1

As part of my jeepbot project, I wanted to build some printed circuit boards (PCBs) to test the concept, try out different designs, and generally just have a real solution. I learned quickly that going from LEGO-style building blocks based on Arduino boards to my own PCB was another learning curve with a lot of unknowns. There are certainly plenty of tutorials online for designing boards, board houses for building them, etc., but it certainly wasn’t an easy or inexpensive job for those learning how to build. As a result, my project languished a bit as both my day job became more demanding (and amazing, rewarding) and the work effort for this project began to look larger and more complicated than I had anticipated.

Around this time, a former co-worker founded MacroFab, a company geared towards solving the problem of making it easier for small “makers” (like me!) to “go from prototype to market faster than ever before.MacroFab’s promise is to make it fast, easy, and cheap to create prototypes, and then make it easy to move into the market easily. Macrofab will even manage production and inventory for you!

While the market support is very intruiging for turning my project into an actual product, at my project stage I was mostly interested in Macrofab for the prototyping aspect of it. Given I had almost zero experience designing schematics, creating boards, or really anything related to creating hardware, I wanted something easy and inexpensive, as I was sure to be making a lot of mistakes.

I decided to make a small board to test out everything. I really didn’t know what to expect when trying to create a real board, so I stuck with something very simple and easy to test: a +12v to +5v power supply. The design I picked was simple: a circuit based on a NCP1117 linear voltage regulator, along with a DC barrel plug for input power, a diode to keep everything safe, a header for the output signals, and a green power-on LED for good measure.

MacroFab’s interface starts off with you creating a new project, and then uploading your design either directly from your design tool, such as CadSoft’s Eagle, or from raw industry standard file formats. Since I’m using Eagle, that was an easy choice.

Screen Shot 2016-02-06 at 3.42.53 PMAfter your files are uploaded and their system processes them, you are presented with a view of your PCB and all of its layers. You also start getting a cost estimate on your design based upon the PCB price, the parts, and MacroFab’s own labor costs. As you can seen from the screenshot, this board costs less than $17 for a quantity of 1. Absolutely amazing.

Screen Shot 2016-02-06 at 3.43.16 PMThe next step in the process is going through your bill of materials. As I learned later, this is the part of the process where you need to pay the most attention. MacroFab’s software will do a decent job of finding parts for you based on your design files. However, not all parts can be found all of the time and you will need to double-check that the parts match your design correctly.

One thing that MacroFab has done is a huge benefit here: they have their own house parts, and an Eagle library to make selecting them easy. For common things such as resistors, capacitors, LEDs, common micro-controllers, headers, etc. these are a slam-dunk. Not only are the parts guaranteed to be on-hand, they’re usually a lot cheaper, too. And for someone like me, I’m not particularly interested in the nuances of picking the absolute “best” part available; I want good-enough, available, cheap, and easy. Are there better LEDs than the ones in MacroFab’s inventory? Maybe, and you can get them if you want, but I’m not sure why I would spend any time looking for them. Can you tell I’m not a hardware engineer?

The final step in the MacroFab interface before ordering is to review the placement of the parts you’ve selected. Here’s your final chance to review, and it gives you a visual indication of how the parts will be placed on the board. It’s pretty easy to see if you’ve picked a through-hole part instead of a surface-mount, for example, so this step is amazing valuable and easy.

Finally, you order your part and MacroFab’s operations take over. Within a day or two of submitting your order, MacroFab’s engineers do a sanity check on your design. In my case, they wanted to verify that I had the right resistor and diode values in my design – I said yes (which later turned out to be wrong!) – and off they went to producing the board.

MacroFab doesn’t create its own PCBs – that’s a cut-throat business with little margin – so they send out for PCBs from other vendors. At the same time, they order any parts they might need for your design if they do not already have the parts in stock. Once everything is in stock, they do the final assembly of the board in house. With all three of the boards I have had them build so far, there have been little issues at this stage of the game, all related to my own mistakes.

In this case, the DC power plug part I picked had the wrong type of through-hole connectors. Whoops! As a newbie, I didn’t have enough attention to detail when I was selecting that part (MacroFab’s interface couldn’t find the right one for me automatically). No matter, I had a bunch of those in my workshop at the house, so I asked them to skip placement of the part.

IMG_2365About two weeks (during the busy holiday season, no less!) after I submitted my order, my board arrived. Included were the spare parts from my order and the assembled board itself. How exciting, my first PCB ever! As someone who started out with electronics and hardware as a kid, but quickly moved to software, this was hugely satisfying and made me wish I had done it decades ago.

You’ll notice the couple of hand-solder marks on the outline for the DC barrel jack that I made. It turns out I didn’t have the right part in my workshop after all, so I just soldered some wire leads to the pins to test everything out. And, it didn’t work! Puzzled, but not surprised, I did some quick analysis. It turns out my diode was not the right voltage rating. Instead of a maximum of 100v, it had a pass-through voltage of 100v instead of 12v… whoops!

Once I bypassed that diode, the circuit worked great, except for my LED not lighting up. I quickly found that I had selected a 150K Ω resistor instead of the 150 Ω resistor I needed. MacroFab actually caught this mistake, but I told them the part was the right one. D’oh!

Regardless, my first experiment was a success. For less than $20 delivered, I had my first PCB design built and I learned a great deal about the process. All of which made it much easier to do my next project, and the goal of all of this – the intelligent switching board for my Jeep. See part 2 for more details on the next phase.